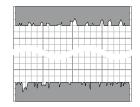
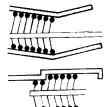


Honen • Entgraten • Kanten brechen


Plateaufinish mit

Flex-Hone®



nach der Bearbeitung

Unkomplizierter Flex-Hone-Gebrauch

Flex-Hone hat keine Steine, die zerbrechen können, und erspart zeitraubende Durchmessereinstellungen. Flex-Hone ist ein Spezialwerkzeug, das sich in jedes Maschinensystem integriert und darüber hinaus sogar mit einfachen Handbohrmaschinen voll einsatzfähig ist.

Flex-Hone wird rotierend in die zu honende Form ein- und ausgeführt und erzeugt bei gleichmäßiger Auf- und Abbewegung einen korrekten Kreuzschliff.

Technisch durchdachtes Prinzip für vielseitigen Einsatz

Flex-Hone-Werkzeuge sind durch ein ausgeklügeltes technisches Prinzip vielseitig einsetzbar. Grundlage der flexiblen Leistungsfähigkeit von Flex-Hone sind Schleifmittel-Kügelchen, die dauerhaft an den Enden starker Nylonbürsten verankert sind.

Diese kompakten, aber in sich flexiblen Werkzeuge erlauben eine gute Anpassung an die Zylinder. Doch nicht nur Zylinderformen, sondern auch konische oder ovale Formen bearbeitet Flex-Hone mühelos.

Kanten werden gebrochen. Blechmantelbildungen werden durch den flexiblen Anpressdruck vermieden und - wo sie durch andere Verarbeitungssysteme aufgetreten sind - durch Flex-Hone leicht entfernt.

Das patentierte Flex-Hone-System ist ein Beispiel dafür, wie einfache, aber durchdachte Technik wirkungsvoll vielfältige Aufgaben wahrnehmen kann.

Flex-Hone - das vielseitige Werkzeug für Industrie und Handwerk

Flex-Hone ist nicht nur ein bewährtes Werkzeug zum Honen, Plateauhonen und Entgraten von Zylindern; mit Rotor- oder Scheiben-Flex-Hone lassen sich auch Außenflächen bearbeiten.

Geeignet für Einzelstücke wie für Großserien.

ie Endbearbeitung

Die Anwendung

Das Flex-Hone-Gerät wird rotierend in den Zylinder hinein- und aus dem Zylinder herausgeführt. Benutzen Sie ein handelsübliches Honöl, eine Mischung aus leichtem Motorenöl und Petroleum oder unser spezielles Flex-Hone-Öl. Arbeiten Sie möglichst nicht trocken.

Benutzen Sie keine Lösungsmittel zum Honen oder Reinigen! Die Drehzahl sollte je nach Durchmesser 60 bis 1200 U/min. betragen. Der Hub sollte an die Drehzahl angepasst werden, um einen Kreuzschliff im gewünschten Winkel zu erhalten. Die Hondauer sollte ca. 5 bis 60 Sekunden betragen – honen Sie nicht zu lange!

Scheiben-Flex-Hone

Einsatzgebiete für Flex-Hone

- Oberflächenverfeinerung von Hydraulik- und Pneumatikzylindern
- Schutz von Wellendichtungen und Manschetten
- Vor- und Nachbearbeitung bei galvanischen und anderen Beschichtungsprozessen
- Honen von Zylindern mit Bohrungen und Kanälen bei gleichzeitiger Verrundung alle Kanten
- Entgraten und Verrunden von Kanten bei gestuften, unterbrochenen Zylindern und Zylindern mit Querbohrungen
- Honen von ausgebohrten Zylindern. Dabei wird ein Plateaufinish erzielt, wie es normalerweise erst nach abgeschlossenem Einlaufvorgang des Motors zu erwarten wäre.
- Instandsetzung von Zylindern und Glätten von Verschleißkanten
- Glattgelaufene Motorzylinder können z.B. beim Wechsel der Kolbenringe aufgeraut werden, und der Kreuzschliff kann wieder perfekt hergestellt werden.
- Reinigen und Polieren, Entfernen von Roststellen bzw. von Flugrost

Rotor-Flex-Hone

Serie BC BC 4 bis BC 4,75 ca. 150 mm Gesamtlänge sonst ca. 200 mm Gesamtlänge lagermäßig

120 – 180 – 240 – 320 SC						
Bezeichnung						
BC 4	4,0 mm					
BC 4,5	4,5 mm					
BC 4,75	4,75 mm					
BC 5	5,0 mm					
BC 5 BC 5,5 BC 6,4	5,5 mm					
BC 6,4	6,4 mm					
BC 7	7,0 mm					
BC 8	8,0 mm					
BC 9	9,0 mm					
BC 9,5 BC 10 BC 11	9,5 mm					
BC 10	10,0 mm					
BC 11	11,0 mm					
BC 12	12,0 mm					
BC 12,7	12,7 mm					
BC 14	14,0 mm					
BC 16	16,0 mm					
BC 18	18,0 mm					
BC 18 BC 19 BC 20	19,0 mm					
BC 20	20,0 mm					
BC 22,2	22,2 mm					
BC 23,8	23,8 mm					
BC 25,4	25,4 mm					
BC 28,6	28,6 mm					
BC 31,8 BC 35 BC 38	31,8 mm					
BC 35	53,0 mm					
BC 38	38,0 mm					
BC 41	41,0 mm					
BC 45	45,0 mm					
BC 48	48,0 mm					
BC 51	51,0 mm					
BC 51 BC 54 BC 57 BC 60	54,0 mm					
BC 57	57,0 mm					
BC 60	60,0 mm					
BC 64	64,0 mm					
BC 67	68,0 mm					
BC 70	70,0 mm					
BC 73 BC 76	73,0 mm					
BC /0	76,0 mm					

Serie GB				
Standarda	Standardausführung			
ca. 350 mm Gesamtlänge				
lagermäßig				
120 - 180 - 240 - 320 SC				
Bezeichnung	für Ø bis zu			
GB 83	83 mm			

GB 89

GB 95

GB 105

GB 118

89 mm

95 mm

105 mm

118 mm

, The state of the	Serie GBD	

schwere Ausführung							
Sechskantschaft							
	ca. 860 mm Gesamtlänge						
	lagermäßig 120 – 180 – 240 – 320 SC						
Bezeichnung	für Ø bis zu						
75 mm Kern,	1/2" Schaft						
GBDH 203	203 mm						
GBD 216	216 mm						
GBD 228	228 mm						
GBD 241	241 mm						
GBD 254	254 mm						
100 mm Kern,							
GBD 267	267 mm						
GBD 280	280 mm						
GBD 292	292 mm						
GBD 305	305 mm						
125 mm Kern, 5/8" Schaft							
GBD 318	318 mm						
GBD 330	330 mm						
GBD 344	344 mm						
GBD 355	355 mm						
150 mm Kern	, 5/8" Schaft						
GBD 381	381 mm						
GBD 406	406 mm						
200 mm Kern,	5/8" Schaft						
GBD 432	432 mm						

Serie GBD

Serie GBD							
	extraschwere Ausführung						
	lagermäßig 120 SC Bezeichnung für Ø bis zu						
292 mm Trom	mel 3						
GBDX 483	egmen A	483 mm					
022/1.00							
GBDX 508	B C	508 mm					
GBDX 533		533 mm					
GBDX 559	D	559 mm					
394 mm Trom							
	egmen						
GBDX 584	Α	584 mm					
GBDX 610	В						
GBDX 635	С	635 mm					
GBDX 660	D	660 mm					
495 mm Trommel, 1" Schaft							
36 Se	egmen						
GBDX 686	Α	686 mm					
GBDX 711	В	711 mm					
GBDX 737	С	737 mm					
GBDX 762	D	762 mm					
GBDX 787	Е	787 mm					
622 mm Trommel, 1 1/4" Schaft							
44 Segmente							
GBDX 813	Α	813 mm					
GBDX 838	В	838 mm					
GBDX 864	С	864 mm					
GBDX 889	D	889 mm					
GBDX 914	D	914 mm					

GBD 76 bis GBD 114 ca. 350 mm Gesamt-						
länge						
sonst ca. 450 mr						
lagerm						
120 - 180 - 2						
Bezeichnung	für Ø bis zu					
GBD 76	76 mm					
GBD 83	83 mm					
GBD 89	89 mm					
GBD 95	95 mm					
GBD 101	101 mm					
GBD 108	108 mm					
GBD 114	114 mm					
GBD 127	127 mm					
GBD 140	140 mm					
GBD 152	152 mm					
GBD 165	165 mm					
GBD 178	178 mm					
GBD 190	190 mm					
GBD 203	203 mm					

Serie für Scheibenbi					
ca. 125 mm Gesamtlänge lagermäßig 240 SC					
Bezeichnung	für Ø bis zu				
DBC 38	38 mm				
DBC 45	45 mm				
DBC 54	54 mm				
DBC 64	64 mm				
DBC 70	70 mm				
DBC 79	79 mm				

457 mm

GBD 457

Ersatzsegmente für GBDX						
lagermäßig 120 SC						
Bezeichnung Gesamtlänge						
GBDX-A Segment	105 mm					
GBDX-B Segment	118 mm					
GBDX-C Segment	133 mm					
GBDX-D Segment	146 mm					
GBDX-E Segment	162 mm					

Flexible Antriebsverlängerung ca. 280 mm Länge

Außer den obigen lagermäßig geführten Hongeräten sind Flex-Hone in beliebigen Abmessungen (auch konisch) und den unten aufgeführten Körnungen lieferbar: Bitte bestellen Sie anhand des tatsächlichen Zylinderdurchmessers. Alle Flex-Hone haben leichte Übergröße.

Schaftmarkierung - Schleifmitteltyp		Siliziumcarbid (Normalausführung) - farblos							
	AO	AO Aluminiumoxid			- :	- schwarz		Nortons Aluminiumpulver ist nur als "super-	
	ВС	Borcarbid			-	- gold			
	WC	Wolframcarbid (beschichtet)		- gelbbraun		fein" (keine Körnung) klassifiziert und ist zum Polieren bestimmt.			
		Aluminiumpulver (superfein)		- grün					
	ZO	Zirkoniumoxid / Aluminiumoxid		- rot					
Endmarkierung - Körnungsgröße	20	braun	80	orange	180	kardinalrot	400	gelb	
	40	purpur	120	silber oder	240	marineblau	600	rosa	
	60	grau		farblos	320	weiß	800	hellblau	

Flex-Hone-Öl						
Bezeichnung ca. Liter						
FHP	0,25					
FHQ	1					
FHG	4					
FH5G	20					

Speziell entwickelt zum Honen mit Flex-Hone für alle Metalle. Es enthält eine Mischung aus Schneid- und Läppölen, ein Schmalzöl, um den Abrieb von Aluminium zu verhindern, ein Feuchtigkeitsdispergens, ein nichtionisches tensidisches Benetzungsmittel, um die komplette Schmierung der Oberfläche zu gewährleisten, ein spezielles Additiv, das Metallspäne und Schleifmittelstaub in einem Schlamm bindet und einen antibakteriellen Wirkstoff. Geben Sie nur eine geringe Menge auf die Zylinderwand, so dass Sie einen Schlamm erhalten. Reinigen Sie den Zylinder sorgfältig und ölen Sie ihn zum Schutz gegen Rost leicht ein.

Rotor-Flex-Hone					
Bezeichnung Korn					
RMFH 60	60				
RMFH 120	120				
RMFH 240	240				

Göddertzgarten 38, D - 53340 Meckenheim

Postfach 1147, D - 53333 Meckenheim ++49 (0) 22 25 / 9 20 10 ++49 (0) 22 25 / 1 75 32

eMail: wkd@wkd.de http://www.wkd.de