

Stossdämpfer Serie RB

Aufprall- und Lärmabsorption

Dämpfung erfüllt modernste Hochgeschwindigkeitsanforderungen.

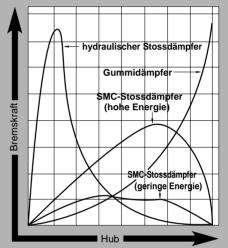
Stossdämpfer: Serie RB Kühlmittelresistent: Serie RBL

Ohne Hubbegrenzungsmutter verwendbar.

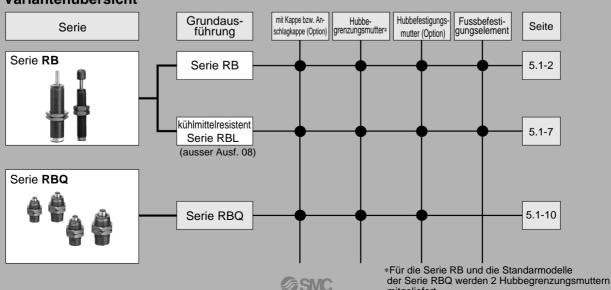
Der solide Körper kann direkt angebaut werden.

Kurze Ausführung Stossdämpfer: Serie RBQ

Eine in der Länge reduzierte, kompakte Ausführung.


Zulässige Exzentrizität 5° Geeignet zur Aufnahme von Rotationsenergien.

Ohne Hubbegrenzungsmutter verwendbar.


Der solide Körper kann direkt angebaut werden.

Automatische Anpassung an den Lastfall

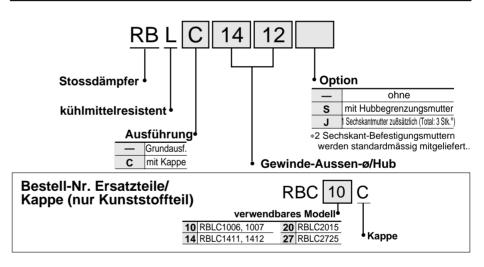
Eine besondere Konstruktion der Düse erlaubt eine optimale Energieabsorption in vielen verschiedenen Anwendungen. Ein grosser Bereich der Energieabsorption, von kleinen Massen mit hoher Geschwindigkeit bis zu grossen Massen mit geringer Geschwindigkeit, kann ohne Verstellungen abgedeckt werden.

Variantenübersicht

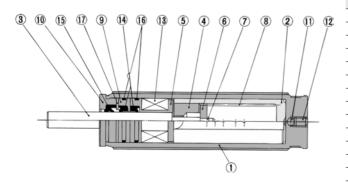
mitgeliefert.

Kühlmittelresistenter Stossdämpfer Serie RBL

Kann in Umgebungen betrieben werden, in denen er nichtwasserlöslichen Schneidölen ausgesetzt ist.


Technische Daten

Na	الماما	Grundausf.	RBL1006	RBL1007	RBL1411	RBL1412	RBL2015	RBL2725				
IVIC	odell	mit Kappe	RBLC1006	RBLC1007	RBLC1411	RBLC1412	RBLC2015	RBLC2725				
max. Ene	ergieaufn	ahme (J)	3.92	5.88	14.7	19.6	58.8	147				
Hub			6	7	11	12	15	25				
Aufprallge	schwindig	keit (m/s)		0.05 bis 5								
max. Betriebfrequenz* (Zyklen/min)			70	70 70 45		45	25	10				
max. zuläs	max. zulässige Aufprallkraft (N)			422	814	814	1961	2942				
zulässiger T	emperaturb	ereich (°C)	-10 bis 80									
Umgebu	ng		nicht mit Wasser vermischbares Schneidöl									
Feder- kraft	entsp	oannt	4.22	4.22	8.73	8.73	11.57	22.16				
(N)	gesp	annt	6.18	6.86	14.12	14.61	17.65	38.05				
Gewicht	Gewicht (g)			25	65	65	150	360				
Ontion	Hubbe-	Grundausf.	RB ⁻	10S	RB	14S	RB20S	RB27S				
Option	grenzungs- mutter	mit Kappe	RBC	108	RBC14S		RBC20S	RBC27S				


^{*}Bei max. Energieaufnahme pro Zyklus. Die max. Zahl kann proportional zur Energieaufnahme zunehmen.

Grundausführung mit Kappe

Bestellschlüssel

Konstruktion

Stückliste

Pos.	Bezeichnung	Material	Bemerkung
1	Aussenrohr	Stahl	schwarz beschichtet
2	Innenrohr	Spezialstahl	gehärtet
3	Kolbenstange	Spezialstahl	hart verchromt
4	Kolben	Spezialstahl	gehärtet
(5)	Lager	Speziallagermaterial	
6	Federführung	Stahl	verz. u. chromatiert
7	Sprengring	Federstahl	
8	Rückstellfeder	Federstahl	verz. u. chromatiert
9	Zwischenring	Kupferlegierung	
10	Anschlag	Stahl	verz. u. chromatiert
11)	Stahlkugel	Lagerstahl	
12	Verschlussschraube	Spezialstahl	
13	Akkumulator	NBR	geschäumt
14)	Abstreifer	NBR	
15	Abstreifer	NBR	
16	Dichtung	NBR	
17)	Distanzstück	Stahl	verz. u. chromatiert

Serie RB Modellauswahl

Auswahlvorgang

1 Lastfall

- □Zylinder mit Last (horizontal)
- □Zylinder mit Last (abwärts)
- □Zylinder mit Last (aufwärts)
- □Förderanlage mit Last (horizontal)
- □freier horizontaler Stoss
- □frei fallende Last
- □schwenkende Last (mit Drehmoment)

2 Wirksame Grössen

Symbol	wirksame Grössen	Einheit
m	aufprallendes Objekt/Gewicht	kg
υ	Aufprallgeschwindigkeit	m/sec
h	Fallhöhe	m
ω	Winkelgeschwindigkeit	rad/sec
r	Abstand zwischen Zylinderachse und Aufprallpunkt (Schwenkradius)	m
d	Kolben-ø	mm
Р	Zylinderbetriebsdruck	MPa
F	Antriebskraft	N
Т	Drehmoment	Nm
n	Betriebszyklen	Zyklen/min
t	Umgebungstemperatur	°C
μ	Reibungskoeffizient	_

Technische Daten und Betriebsbedingungen Stellen Sie sicher, dass die Aufprallgeschwindigkeit, Antriebskraft, Betriebszyklen, Umgebungstemperatur und Atmosphäre innerhalb der technischen Daten liegen.

Beachten Sie den min. Installationsradius

beim schwenkenden Lastfall.

4 Berechnung der kinetischen Energie E1 Verwenden Sie die Gleichung zur Bestimmung des Lastfalls.

Bei Zylindern mit Last und beim freien horizontalen Aufprall setzen Sie die ent-sprechenenden Werte des Diagramms A ein, um E1 zu berechnen

5 Berechnung der Antriebskraft E2 Wählen Sie ein vorläufiges Stossdämpfermodell aus.

Bei Antriebskraft des Zylinders setzen Sie die entsprechenden Werte in Diagramm B oder C ein.

6 Berechnung des effektiven Gewichts des aufprallenden Objekts Me Energieaufnahme E=E1+E2

effektives Gewicht des aufprallenden Objekts

Setzen Sie die Energieaufnahme E und die Aufprall-geschwindigkeit V in Diagramm A ein, um das effek-tive Gewicht des aufprallenden Objekts zu berechnen.

7 Auswahl des geeigneten Modells Mit Hilfe des gefundenen effektiven Gewichts des aufprallenden Objekts Me und der Aufprallgeschwindigkeit V kann nun mit Diagramm D die Vorauswahl bestätigt

Achtung

Damit der Stossdämpfer einwandfrei über viele Stunden funktioniert, ist es wichtig, dass ein Modell gewählt wird, das den jeweiligen Bedingungen angepasst ist. Wenn die Aufprallenergie kleiner als 5% der max. absorbierbaren Energie ist, wählen Sie das nächstkleinere Modell.

Auswahlbeispiel

	Zylinder mit Last (horizontal)
1	Stossdämpfer
Lastfall	Fi Last m
Aufprallge- schwindigkeit ⁽¹⁾ U	υ
kinetische Energie E1	$\frac{1}{2}$ m v^2
Antriebskraft E ₂	F₁S
Energieaufnahme E	E ₁ +E ₂
Energieaufnahme E aufprallendes Objekt/ entsprechendes Gewicht Me (2)	E ₁ +E ₂ 2/U ² E
aufprallendes Objekt/ entsprechendes	

Technische

 $\begin{array}{lll} \upsilon & \cdots & 0.3 < 5 \text{ (max.)} \\ t & \cdots & -10 \text{ (min.)} < 25 < 80 \text{ (max.)} \\ F & \cdots & F1 \cdots 628 < 1961 \text{ (max.)} \end{array}$ Daten/Betriebs-

bedingungen

Berechnen Sie E1 mit obiger Formel. Ersetzen Sie m durch 50 und υ Berechnung der durch 0.3.

E₁ ≅ 2.3J

kinetischen Energie E1

5 Berechnung der Antriebs-

Verwenden Sie Diagramm B, um E2 zu berechnen. Ersetzen Sie d durch 40. Berechnen Sie das effektive Gewicht des aufprallenden Objekts $E_2\cong 9.4J$

6

kraft E2

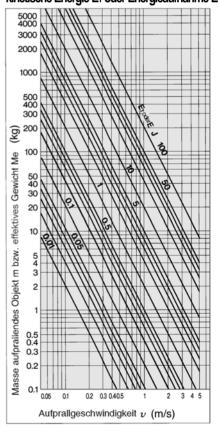
effektiven Gewichts des aufpralleneden Objekts Me

Berechnung des Verwenden Sie die Formel "Energieaufnahme E=E1+E2=2.3+9.4=11.7J", um Me zu berechnen. Ersetzen Sie E durch 11.7J und v durch 0.3.

Me ≅ 260kg

7 Auswahl des geeigneten Modells

Gemäss Diagramm D erfüllt die vorläufige Auswahl von RB2015 die Bedingung Me= 260kg<400kg bei υ=0.3. Bei einem Einsatz mit Betriebszyklen n...20 <25 treten keine Probleme auf.


1 Bestimmung des Lastfalls

	(abwärts)	
Lastfall	F ₁ Zylinder Last υ	
Aufprallge- schwindigkeit υ ⁽¹⁾	υ	
kinetische Energie	$\frac{1}{2}$ m v^2	
Antriebskraft E ₂	F₁S+mgs	
Energieauf- nahme E	E1+E2	
auprallendes Objekt/ (2) effektives Gewicht Me	$\frac{2}{v^2}$ E	

Anm. 1) Die Aufprallgeschwindigkeit ist die momentane Geschwindigkeit, mit der ein Objekt am Stossdämpfer aufprallt.

Diagramm A

kinetische Energie E1 oder Energieaufnahme E

Stossdämpfer Serie RB

(aufwärts)	Förderanlage mit Last (horizontal)	frei fallende Last	schwenkende Last (mit Drehmoment)
v Last m Zylinder	Last m q	Last v	T T T T T T T T T T T T T T T T T T T
υ	υ	$\sqrt{2gh}$	ω R
$\frac{1}{2}$ m v^2	$\frac{1}{2}$ m v^2	mgh	$\frac{1}{2}$ I ω^2
F1S-mgS	mgμS	mgS	T S R
E1+E2	E1+E2	E1+E2	E1+E2
$\frac{2}{v^2}$ E	$\frac{2}{v^2}$ E	$\frac{2}{v^2}$ E	$\frac{2}{v^2}$ E

Anm. 2) Das "effektive Gewicht des aufprallenden Objekts" ist das Gewicht eines aufprallenden Objekts ohne Schub, das durch Umwandlung der Gesamtenergie des Objektes ermittelt wird.

Anm. 3) Siehe Katalog für Schwenkantriebe für die Formel des Massenträgheitsmoments (Kgm²).

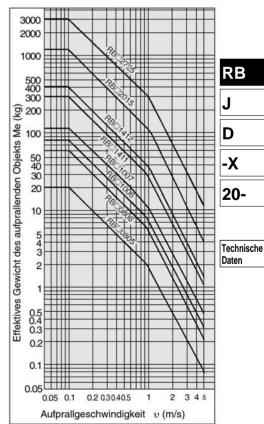
Symbol

Symbol wirksame Grösse Einheit d Kolben-ø mm E Energieaufnahme J E1 kinetische Energie J E2 Antriebskraft J F1 Zylinderschub N g Schwerkraftbeschleunigung m/s² h Fallhöhe m I(3) Massenträgheitsmoment kgm² n Betriebsfrequenz Zyklen/mir p Zylinderbetriebsdruck MPa R Abstand zwischen Zylinderachse und Aufprallpunkt (Schwenkradius) m S Stossdämpferhub m T Drehmoment Nm T Drehmoment Nm t Umgebungstemperatur °C v Aufprallgeschwindigkeit m/s Me effektives Gewicht des aufprallenden Objekts kg Winkelgeschwindigkeit rad/s μ Reibungskoeffizient —	Symb	OI		
E Energieaufnahme J E1 kinetische Energie J E2 Antriebskraft J F1 Zylinderschub N g Schwerkraftbeschleunigung m/s² h Fallhöhe m I(3) Massenträgheitsmoment kgm² n Betriebsfrequenz Zyklen/mir p Zylinderbetriebsdruck MPa R Abstand zwischen Zylinderachse und Aufprallpunkt (Schwenkradius) S Stossdämpferhub m T Drehmoment Nm t Umgebungstemperatur °C U Aufprallgeschwindigkeit m/s m Gewicht des aufprallenden Objekts Me effektives Gewicht des aufprallenden Objekts Winkelgeschwindigkeit rad/s	Symbol	wirksame Grösse	Einheit	
E1 kinetische Energie J E2 Antriebskraft J F1 Zylinderschub N g Schwerkraftbeschleunigung m/s² h Fallhöhe m I(3) Massenträgheitsmoment kgm² n Betriebsfrequenz Zyklen/mir p Zylinderbetriebsdruck MPa R Abstand zwischen Zylinderachse und Aufprallpunkt (Schwenkradius) S Stossdämpferhub m T Drehmoment Nm t Umgebungstemperatur °C U Aufprallgeschwindigkeit m/s m Gewicht des aufprallenden Objekts Me effektives Gewicht des aufprallenden Objekts Winkelgeschwindigkeit rad/s	d	Kolben-ø	mm	
E2 Antriebskraft J F1 Zylinderschub N g Schwerkraftbeschleunigung m/s² h Fallhöhe m I(3) Massenträgheitsmoment kgm² n Betriebsfrequenz Zyklen/mir p Zylinderbetriebsdruck MPa R Abstand zwischen Zylinderachse und Aufprallpunkt (Schwenkradius) S Stossdämpferhub m T Drehmoment Nm t Umgebungstemperatur °C U Aufprallgeschwindigkeit m/s m Gewicht des aufprallenden Objekts kg Me effektives Gewicht des aufprallenden Objekts kg Winkelgeschwindigkeit rad/s	Е	Energieaufnahme	J	
F1 Zylinderschub N g Schwerkraftbeschleunigung m/s² h Fallhöhe m I(3) Massenträgheitsmoment kgm² n Betriebsfrequenz Zyklen/mir p Zylinderbetriebsdruck MPa R Abstand zwischen Zylinderachse und Aufprallpunkt (Schwenkradius) S Stossdämpferhub m T Drehmoment Nm t Umgebungstemperatur °C υ Aufprallgeschwindigkeit m/s m Gewicht des aufprallenden Objekts kg Me effektives Gewicht des aufprallenden Objekts Winkelgeschwindigkeit rad/s	E1	kinetische Energie	J	
g Schwerkraftbeschleunigung m/s² h Fallhöhe m I(3) Massenträgheitsmoment kgm² n Betriebsfrequenz Zyklen/mir p Zylinderbetriebsdruck MPa R Abstand zwischen Zylinderachse und Aufprallpunkt (Schwenkradius) S Stossdämpferhub m T Drehmoment Nm t Umgebungstemperatur °C υ Aufprallgeschwindigkeit m/s m Gewicht des aufprallenden Objekts kg Me effektives Gewicht des aufprallenden Objekts kg Winkelgeschwindigkeit rad/s	E2	Antriebskraft	J	
h Fallhöhe m I(3) Massenträgheitsmoment kgm² n Betriebsfrequenz Zyklen/mir p Zylinderbetriebsdruck MPa R Abstand zwischen Zylinderachse und Aufprallpunkt (Schwenkradius) S Stossdämpferhub m T Drehmoment Nm t Umgebungstemperatur °C υ Aufprallgeschwindigkeit m/s m Gewicht des aufprallenden Objekts kg Me effektives Gewicht des aufprallenden Objekts w Winkelgeschwindigkeit rad/s	F1	Zylinderschub	N	
π Massenträgheitsmoment kgm² n Betriebsfrequenz Zyklen/mir p Zylinderbetriebsdruck MPa R Abstand zwischen Zylinderachse und Aufprallpunkt (Schwenkradius) m S Stossdämpferhub m T Drehmoment Nm t Umgebungstemperatur °C υ Aufprallgeschwindigkeit m/s m Gewicht des aufprallenden Objekts kg Me effektives Gewicht des aufprallenden Objekts kg ω Winkelgeschwindigkeit rad/s	g	Schwerkraftbeschleunigung	m/s ²	
n Betriebsfrequenz Zyklen/mir p Zylinderbetriebsdruck MPa R Abstand zwischen Zylinderachse und Aufprallpunkt (Schwenkradius) S Stossdämpferhub m T Drehmoment Nm t Umgebungstemperatur °C U Aufprallgeschwindigkeit m/s m Gewicht des aufprallenden Objekts kg Me effektives Gewicht des aufprallenden Objekts kg Winkelgeschwindigkeit rad/s	h	Fallhöhe	m	
P Zylinderbetriebsdruck MPa R Abstand zwischen Zylinderachse und Aufprallpunkt (Schwenkradius) m S Stossdämpferhub m T Drehmoment Nm t Umgebungstemperatur °C υ Aufprallgeschwindigkeit m/s m Gewicht des aufprallenden Objekts kg Me effektives Gewicht des aufprallenden Objekts kg ω Winkelgeschwindigkeit rad/s	I ⁽³⁾	Massenträgheitsmoment	kgm²	
R Abstand zwischen Zylinderachse und Aufprallpunkt (Schwenkradius) S Stossdämpferhub m T Drehmoment Nm t Umgebungstemperatur °C v Aufprallgeschwindigkeit m/s m Gewicht des aufprallenden Objekts kg Me effektives Gewicht des aufprallenden Objekts kg Winkelgeschwindigkeit rad/s	n	Betriebsfrequenz	Zyklen/min	
S Stossdämpferhub m T Drehmoment Nm t Umgebungstemperatur °C U Aufprallgeschwindigkeit m/s m Gewicht des aufprallenden Objekts kg Me effektives Gewicht des aufprallenden Objekts kg Winkelgeschwindigkeit rad/s	р	Zylinderbetriebsdruck	MPa	
T Drehmoment Nm t Umgebungstemperatur °C U Aufprallgeschwindigkeit m/s m Gewicht des aufprallenden Objekts kg Me effektives Gewicht des aufprallenden Objekts kg Winkelgeschwindigkeit rad/s	R	Abstand zwischen Zylinderachse und Aufprallpunkt (Schwenkradius)	m	
t Umgebungstemperatur °C U Aufprallgeschwindigkeit m/s m Gewicht des aufprallenden Objekts kg Me effektives Gewicht des aufprallenden Objekts kg Winkelgeschwindigkeit rad/s	S	Stossdämpferhub	m	
υ Aufprallgeschwindigkeit m/s m Gewicht des aufprallenden Objekts kg Me effektives Gewicht des aufprallenden Objekts kg ω Winkelgeschwindigkeit rad/s	Т	Drehmoment	Nm	
m Gewicht des aufprallenden Objekts kg Me effektives Gewicht des aufprallenden Objekts kg ω Winkelgeschwindigkeit rad/s	t	Umgebungstemperatur	°C	
Me effektives Gewicht des aufprallenden Objekts kg ω Winkelgeschwindigkeit rad/s	υ	Aufprallgeschwindigkeit	m/s	
we aufprallenden Objekts Kg www. Winkelgeschwindigkeit rad/s	m	Gewicht des aufprallenden Objekts	kg	
1 3 1 1 1	Ме		kg	
μ Reibungskoeffizient —	ω	Winkelgeschwindigkeit	rad/s	
	μ	Reibungskoeffizient	_	

Diagramm B

 $\underbrace{ \text{Antriebskraft des Zylinders F}_{1} S}^{\text{(Betriebsdruck: 0.5MPa)}}$

М	odell	RB□ 0805	RB□0806 RB□1006	RB□ 1007	RB□ 1411	RB□ 1412	RB□ 2015	RB□ 2725	
	orptions- hub (mm)	5	6	7	11	12	15	25	
	6	0.071	0.085	0.099	0.156	0.170	0.212	0.353	
	10	0.196	0.236	0.274	0.432	0.471	0.589	0.982	
	15	0.442	0.530	0.619	0.972	1.06	1.33	2.21	
	20	0.785	0.942	1.10	1.73	1.88	2.36	3.93	
	25	1.23	1.47	1.72	2.70	2.95	3.68	6.14	
	30	1.77	2.12	2.47	3.89	4.24	5.30	8.84	
Ē	40	3.14	3.77	4.40	6.91	7.54 11.8 18.7	9.42	15.7	
٤	50	4.91	5.89	6.87	10.8		14.7	24.5	
ø	63	7.79	9.35	10.9	17.1		23.4	39.0	
Kolben-ø d (mm)	80	12.6	15.1	17.6	27.6	30.2	37.7	62.8	
흥	100	19.6	23.6	27.5	43.2	47.1	58.9	98.2	
_	125	30.7	36.8	43.0	67.5	73.6	92.0	153	
	140	38.5	46.2	53.9	84.7	92.4	115	192	
	160	50.3	60.3	70.4	111	121	151	251	
	180	63.6	76.3	89.1	140	153	191	318	
	200	78.5	94.2	110	173	188	236	393	
	250	123	147	172	270	295	368	614	
	300	177	212	247	389	424	530	884	


■Anderer Betriebsdruck als 0.5MPa: Multiplizieren Sie mit folgenden Faktoren

Multiplizie	wulliplizieren Sie init lolgenden Faktoren												
Betriebs- druck (MPa)	0.1	0.2	0.3	0.4	0.5	0.6	0.7	0.8	0.9				
Koeffizient	0.2	0.4	0.6	0.8	1.0	1.2	1.4	1.6	1.8				

Diagramm C Schubenergie mit Last (mgs)

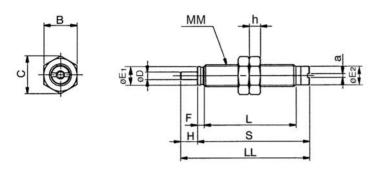
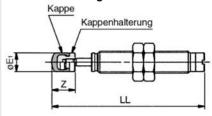
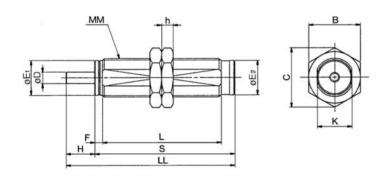


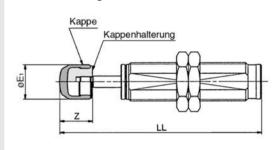
Diagramm D **Effektives Gewicht des** aufprallenden Objekts Me


Abmessungen

Grundausführung/RB0805, RB0806, RB1006, RB1007


mit Kappe/RBC0805, RBC0806 RBC1006, RBC1007

 Die anderen Abmessungen entsprechen denen der Grundausführung.

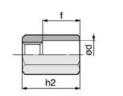

Mo		Grundausführung										mit Kappe*			Sechskantmutter		
Grundausführung	mit Kappe	D	E1	E2	F	Н	а	L	LL	MM	S	E1	LL	Z	В	С	h
RB0805	RBC0805	2.8	6.8	6.8	2.4	5	1.4	33.4	45.8	M8 X 1.0	40.8	6.8	54.3	8.5	12	13.9	4
RB0806	RBC0806	2.8	6.8	6.8	2.4	6	1.4	33.4	46.8	M8 X 1.0	40.8	6.8	55.3	8.5	12	13.9	4
RB1006	RBC1006	3	8.8	8.6	2.7	6	1.4	39	52.7	M10 X 1.0	46.7	8.7	62.7	10	14	16.2	4
RB1007	RBC1007	3	8.8	8.6	2.7	7	1.4	39	53.7	M10 X 1.0	46.7	8.7	63.7	10	14	16.2	4

Grudausführung/RB1411, RB1412, RB2015, RB2725

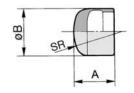
mit Kappe/RBC1411, RBC1412 RBC2015, RBC2725

* Die anderen Abmessungen entsprechen denen der Grundausführung.

Modell			Grundausführung										mit Kappe*			Sechskantmutter		
Grundausführung	mit Kappe	D	E1	E2	F	Н	K	L	LL	MM	S	E1	LL	Z	В	C	h	
RB1411	RBC1411	5	12.2	12	3.5	11	12	58.8	78.3	M14 X 1.5	67.3	12	91.8	13.5	19	21.9	6	
RB1412	RBC1412	5	12.2	12	3.5	12	12	58.8	79.3	M14 X 1.5	67.3	12	92.8	13.5	19	21.9	6	
RB2015	RBC2015	6	18.2	18	4	15	18	62.2	88.2	M20 X 1.5	73.2	18	105.2	17	27	31.2	6	
RB2725	RBC2725	8	25.2	25	5	25	25	86	124	M27 X 1.5	99	25	147	23	36	41.6	6	


Sechskantmutter (2 Stk. Standard)

Option


Hubbegrenzungsmutter

Grundausführung

Ausführung mit Kappe

Kappe * Dies sind die Ersatzteile für die Ausführung mit Kappe. Nicht erhältlich für die Grundausführung.

Ω	MM
\Box	
ihi.	В
-1 1-	1.5

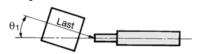
Bestell-Nr.	Abmessungen									
Destell-IVI.	MM	h	В	С						
RB08J	M8 X 1.0	4	12	13.9						
RB10J	M10 X 1.0	4	14	16.2						
RB14J	M14 X 1.5	6	19	21.9						
RB20J	M20 X 1.5	6	27	31.2						
RB27J	M27 X 1.5	6	36	41.6						

Beste	ell-Nr.							
Grundausf.	mit Kappe	В	С	h1	h2	MM	d	f
RB08S	RBC08S	12	13.9	6.5	23	M8 X 1.0	9	15
RB10S	RBC10S	14	16.2	8	23	M10 X 1.0	11	15
RB14S	RBC14S	19	21.9	11	31	M14 X 1.5	15	20
RB20S	RBC20S	27	31.2	16	40	M20 X 1.5	23	25
RB27S	RBC27S	36	41.6	22	51	M27 X 1.5	32	33

Material: PUR Abmessungen Bestell-Nr. В R1 RBC08C 6.5 6.8 6 RBC10C 8.7 7.5 9 RBC14C 12.5 12 10 RBC20C 18 20 16 RBC27C 21 25 25

△ Sicherheitshinweise

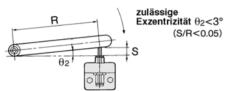
Vor Inbetriebnahme lesen. Siehe S. 0-39 bis 0-43 für Sicherheitshinweise und allgemeine Vorsichtsmassnahmen.


Auswahl

Marnung

1) Die Installation muss so erfolgen, dass der Aufprall des Körpers in

Achsrichtung des Stössels erfolgt.


Eine Abweichung von mehr als 3° führt zu einer übermässigen Belastung der Lager, was zu Ölleckagen nach nur kurzer Betriebszeit führen kann.

zulässige Exzentrizität θ_1 <3°

②Bei schwenkenden Lasten muss die Installation so erfolgen, dass die Richtung, in der die Last auf den Stossdämpfer prallt, in Achsrichtung des Stössels verläuft.

Der zulässige Bremswinkel zum Hubende beträgt θ_2 < 3°. In einem diesem Fall ist der min. Installationsradius wie in der untenstehenden Tabelle angegeben. Wenn der Winkel 3° übersteigt, könnte dies zu Ölleckagen führen.

Installationsvoraussetzungen für schwenkenden Aufprall (mm)

	S	θ_2	R
Modell	(Hub)	(zulässiger Bremswinkel)	(min. Installationsradius)
RB□□0805	5		96
RB□□0806	6		115
RB□□1006	6		115
RB□□1007	7	3°	134
RB□□1411	11		210
RB□□1412	12		229
RB□□2015	15		287
RB□□2725	25		478

3Eine Führung ist erforderlich, wenn der aufprallende Körper mit

Vibrationen verbunden ist.
Wenn der aufprallende Körper mit Vibrationen verbunden ist und wenn eine
Kraft in Achsrichtung auf die Kolbenstange wirkt, muss der aufprallende

Körper mit einer sicheren Führung versehen werden.

4 Bei der Installation muss die Steifigkeit des Montagerahmens berücksichtigt werden.

Bei mangelnder Steifigkeit vibriert der Stossdämpfer nach einem Aufprall, was zu einer Abnutzung der Lager und zu Beschädigungen führt. Berechnen Sie mit folgender Formel die Kraft, die auf den Montagerahmen E (Energieaufnahme J)

Kraft, die auf den Montagerahmen wirkt $N \cong 2$

⚠ Achtung

①Die in den technischen Daten angegebene max. absorbierte Energie der Serien RB und RBL kann nicht erreicht werden, wenn nicht der

gesamte Hub verwendet wird.
②Die Kontaktoberfläche des aufprallenden Körpers, die mit der Kolbenstange zusammentrifft, muss äusserst steif sein.

Bei der Ausführung ohne Kappe, wird der Kontaktoberfläche des aufprallenden Körpers eine hohe Druckbelastung zugeführt. Deshalb muss die Kontaktoberfläche äusserst steif sein (Härtegrad min. HRC 35).

3 Beachten Sie die Rückprallkraft des aufprallenden Körpers. Bei Verwendung mit Förderanlagen kann der aufprallende Körper, nachdem der Stossdämpfer die Energie aufgenommen hat, aufgrund der eingebauten Feder zurückprallen. Beachten Sie die Angaben zur Federkraft in den technischen Daten (S.5.1-2).

Umgebung

⚠ Warnung

1) Setzen Sie den Stossdämpfer nicht Maschinenöl, Wasser oder Staub

aus.

Die Serie RB kann nicht in Umgebungen eingesetzt werden, in denen Maschinenöl oder Wasser als Sprühnebel auftreten, oder in denen Staub sich an die Kolbenstange anheften könnte. Solche Bedingungen verursachen Fehlfunktionen.

②Setzen Sie den Stossdämpfer nicht in Umgebungen ein, die Korrosion begünstigen. Beachten Sie die Materialien, die für den Stossdämpfer verwendet werden, in den

entsprechenden Konstruktionszeichnung

③Verwenden Sie den Stossdämpfer nicht in Reinräumen, weil diese sonst kontaminiert werden könnten

Montage

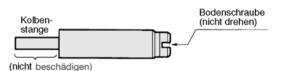
🛆 Warnung

①Stellen Sie sicher, dass vor dem Einbau, Ausbau oder Hubeinstellung die Stromversorgung der Anlage ausgeschaltet wurde und überprüfen Sie, ob die Anlage angehalten ist.

⚠ Achtung

①Das Anzugsmoment der Befestigungsmuttern ist wie folgt:

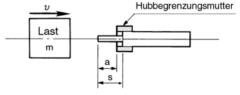
Modell	RB0805 RB0806	RB□1006 RB□1007	RB□1411 RB□1412	RB□2015	RB□2725
Gewinde-Aussen-ø (mm)	M8 X 1.0	M10 X 1.0	M14 X 1.5	M20 X 1.5	M27 X 1.5
Gewindebohrung (mm)	ø7.1 ^{+0.1}	ø9.1 ⁰	ø12.7 ^{+0.1}	ø18.7 ^{+0.1}	ø25.7 ^{+0.1}
Anzugsmoment (Nm)	1.67	3.14	10.8	23.5	62.8


Wenn das Anzugsmoment den in der obigen Tabelle angegebenen Wert übersteigt, könnte der Stossdämpfer beschädigt werden

2)Beschädigen Sie nicht den Gleitteil der Kolbenstange oder die Aussenseite.

Ansonsten könnten Dichtungen beschädigt werden, was zu Ölleckagen und Fehlfunktionen führt. Beschädigungen am Gewinde des Aussenrohres könnten eine Montage am Rahmen verhindern oder innere Komponenten

könnten deformiert werden, was zu Fehlfunktionen führt.


3 Drehen Sie niemals die Schraube am Boden des Stossdämpfers. Sie ist keine Einstellschraube. Ein Verstellen führt zu Ölleckagen.

Stellen Sie den Anhaltezeitpunkt wie folgt durch Verwendung der Hubbegrenzugsmutter ein.

Stellen Sie den Anhaltezeitpunt des aufprallenden Körpers durch Ein- oder Ausdrehen der Hubbegrenzungsmutter ein (Veränderung der Länge "a").

Nach Einstellen der Hubbegrenzungsmutter sichern Sie diese mit einer Sechskantmutter.

⚠ Achtung

①Stellen Sie sicher, dass die Sicherungsmutter nicht locker ist. Der Stossdämpfer könnte ansonsten beschädigt werden.

②Achten Sie auf abnormale Aufprallgeräusche und Vibrationen. Wenn abnormale Aufprallgeräusche und Vibrationen übermässig auftreten, könnte der Stossdämpfer kurz vor seiner Abnutzung stehen. Wenn dies der Fall ist, ersetzen Sie ihn. Bei Weiterverwendung könnte die Anlage

Wartung

beschädigt werden.

3 Überprüfen Sie die Kappe auf Risse und Abnutzung.
Bei der Ausführung mit Kappe nutzt sich diese als erste ab. Um Beschädigungen am aufprallenden Körper zu vermeiden, wechseln Sie die Kappe regelmässig aus.

Technische Daten

RB

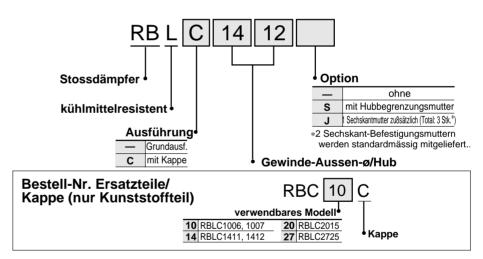
D

-X

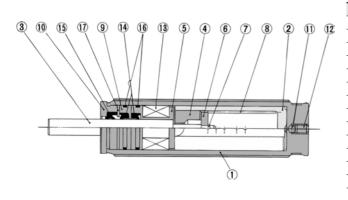
20-

Kühlmittelresistenter Stossdämpfer Serie RBL

Kann in Umgebungen betrieben werden, in denen er nichtwasserlöslichen Schneidölen ausgesetzt ist.


Technische Daten

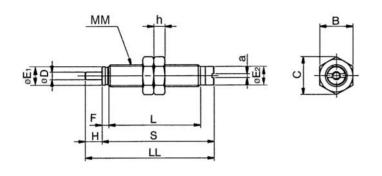
Ma	dall	Grundausf.	RBL1006	RBL1007	RBL1411	RBL1412	RBL2015	RBL2725		
IVIC	Modell m		RBLC1006	RBLC1007	RBLC1411	RBLC1412	RBLC2015	RBLC2725		
max. Ene	ergieaufna	ahme (J)	3.92	5.88	14.7	19.6	58.8	147		
Hub			6	7	11	12	15	25		
Aufprallge	schwindig	keit (m/s)		0.05 bis 5						
max. Betrieb	ofrequenz* (2	Zyklen/min)	70	70	45	45	25	10		
max. zuläs	max. zulässige Aufprallkraft (N)		422	422	814	814	1961	2942		
zulässiger T	emperaturb	ereich (°C)	-10 bis 80							
Umgebu	ng		nicht mit Wasser vermischbares Schneidöl							
Feder- kraft	entsp	annt	4.22	4.22	8.73	8.73	11.57	22.16		
(N)	gesp	annt	6.18	6.86	14.12	14.61	17.65	38.05		
Gewicht (g)		25	25 25		65	150	360			
Ontion		Grundausf.	RB ²	10S	RB ⁻	14S	RB20S	RB27S		
Option	grenzungs- mutter	mit Kappe	RBC	10S	RBC	148	RBC20S	RBC27S		


^{*}Bei max. Energieaufnahme pro Zyklus. Die max. Zahl kann proportional zur Energieaufnahme zunehmen.

Grundausführung mit Kappe

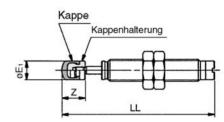
Bestellschlüssel

Konstruktion



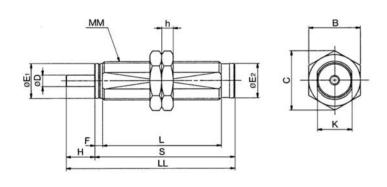
Stückliste

Pos.	Bezeichnung	Material	Bemerkung
1	Aussenrohr	Stahl	schwarz beschichtet
2	Innenrohr	Spezialstahl	gehärtet
3	Kolbenstange	Spezialstahl	hart verchromt
4	Kolben	Spezialstahl	gehärtet
(5)	Lager	Speziallagermaterial	
6	Federführung	Stahl	verz. u. chromatiert
7	Sprengring	Federstahl	
8	Rückstellfeder	Federstahl	verz. u. chromatiert
9	Zwischenring	Kupferlegierung	
10	Anschlag	Stahl	verz. u. chromatiert
11)	Stahlkugel	Lagerstahl	
12	Verschlussschraube	Spezialstahl	
13	Akkumulator	NBR	geschäumt
14)	Abstreifer	NBR	
15	Abstreifer	NBR	
16	Dichtung	NBR	
17)	Distanzstück	Stahl	verz. u. chromatiert

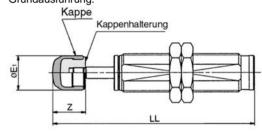

Abmessungen

Grundausführung/RBL1006, RBL1007

mit Kappe/RBLC1006, RBLC1007

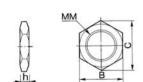

* Die anderen Abmessungen entsprechen denen der Grundausführung.

Mo		Grundausführung						m	nit Kapp	e*	Sech	skantm	nutter				
Grundausführung	mit Kappe	D	E1	E2	F	Н	а	L	LL	MM	S	E1	LL	Z	В	С	h
RBL1006	RBLC1006	3	8.8	8.6	2.7	6	1.4	43.8	57.5	M10 X 1.0	51.5	8.7	67.5	10	14	16.2	4
RBL1007	RBLC1007	3	8.8	8.6	2.7	7	1.4	43.8	58.5	M10 X 1.0	51.5	8.7	68.5	10	14	16.2	4


Anm.) Die Abmessungen L, LL und S der Ausführung RBL(C)1007/1006 und der Ausführung RB(C)1007/1006 sind verschieden.

Grundausführung/RBL1411, RBL1412, RBL2015, RBL2725

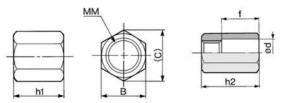
mit Kappe/RBLC1411, RBLC1412 RBLC2015, RBLC2725


* Die anderen Abmessungen entsprechen denen der Grundausführung.

Grundausführung mit Kappe' Sechskantmutter Modell Grundausführung mit Kappe D E1 LL MM S E1 LL В С **RBL1411 RBLC1411** 5 12 11 12 83.1 M14 X 1.5 12 96.6 19 12.2 3.5 63.6 72.1 13.5 21.9 6 **RBL1412 RBLC1412** 5 12.2 12 3.5 12 12 63.6 84.1 M14 X 1.5 72.1 12 97.6 13.5 19 21.9 6 **RBL2015 RBLC2015** M20 X 1.5 6 18.2 18 4 15 18 62.2 88.2 73.2 18 105.2 17 27 31.2 6 **RBL2725 RBLC2725** 25.2 25 5 25 25 91.5 | 129.5 | M27 X 1.5 104.5 152.5 23 36 41.6 6

Anm.) Die Abmessungen L, LL und S der Ausführung RBL(C)1007/1006 und der Ausführung RB(C)1007/1006 sind verschieden.

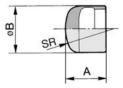
Sechskantmutter (2 Stk. Standard)



Bestell-Nr.	Abmessungen										
Destell-IVI.	MM	h	В	С							
RB10J	M10 X 1.0	4	14	16.2							
RB14J	M14 X 1.5	6	19	21.9							
RB20J	M20 X 1.5	6	27	31.2							
RB27J	M27 X 1.5	6	36	41.6							

Option

Hubbegrenzungsmutter Ausführung mit Kappe


Grundausführung

Beste	ell-Nr.	Abmessungen						
Grundausf.	mit Kappe	В	С	h1	h2	MM	d	f
RB10S	RBC10S	14	16.2	8	23	M10 X 1.0	11	15
RB14S	RBC14S	19	21.9	11	31	M14 X 1.5	15	20
RB20S	RBC20S	27	31.2	16	40	M20 X 1.5	23	25
RB27S	RBC27S	36	41.6	22	51	M27 X 1.5	32	33

Ersatzteile

Kappe * Dies sind die Ersatzteile für die Ausführung mit Kappe. Nicht erhältlich für die Grundausführung,

Material: PUR

RB

D

-X

20-

Technische

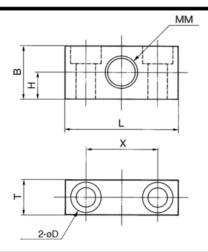
Daten

Bestell-Nr.	
A B SR	
RBC10C 9 8.7 7.5	
RBC14C 12.5 12 10	
RBC20C 16 18 20	
RBC27C 21 25 25	

Serie RB, RBL

Besteloptionen Wenden Sie sich an SMC für detailierte Abmessungen, technische Daten und Lieferbedingungen.

Befestigungselement für Stossdämpfer Für das Befestigungselement der Serie RB.

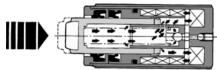


Bestell-Nr.

Bestell-Nr.	verwendbarer Stossdämpfer
RB08-X331	RB□805, 0806
RB10-X331	RB□1006, 1007
RB14-X331	RB□1411, 1412
RB20-X331	RB□2015
RB27-X331	RB□2725

^{*}Bestellen Sie das Befestigungselement extra.

Abmessungen



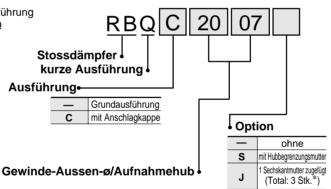
Bestell-Nr.	В	D	Н	L	MM	Т	Х	Befestigungsschraube
RB08-X331	15	4.5 Bohrung, 8 Senkungstiefe 4.4	7.5	32	M8 X 1.0	10	20	M4
RB10-X331	19	5.5 Bohrung, 9.5 Senkungstiefe 5.4	9.5	40	M10 X1.0	12	25	M5
RB14-X331	25	9 Bohrung, 14 Senkungstiefe 8.6	12.5	54	M14 X 1.5	16	34	M8
RB20-X331	38	11 Bohrung, 17.5 Senkungstiefe 10.8	19	70	M20 X 1.5	22	44	M10
RB27-X331	50	13.5 Bohrung, 20 Senkungstiefe 13	25	80	M27 X 1.5	34	52	M12

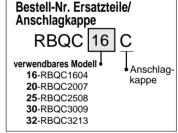
Stossdämpfer Kurze Ausführung Serie RBQ

Zulässige Exzentrizität 5°

Ideal zur Aufnahme von Rotationsenergien.

mit Anschlagkappe Serie RBQC


Grundausführung Serie RBQ

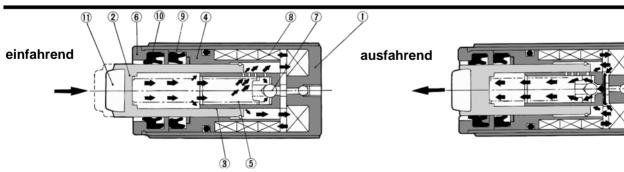

Technische Daten

Mode		Grundausf.	RBQ1604	RBQ2007	RBQ2508	RBQ3009	RBQ3213			
Mode	ll .	mit Anschlagkappe	RBQC1604	RBQC2007	RBQC2508	RBQC3009	RBQC3213			
max. Energ	ieaufn	nahme (J)	1.96	11.8	19.6	33.3	49.0			
Hub (mm)			4	7	8	8.5	13			
Aufprallgeschwindigkeit (m/s)				0.05 bis 3						
max. Betriebfre	max. Betriebfrequenz* (Zyklen/min)			60	45	45	30			
max. zulässig	e Aufp	rallkraft (N)	294	490	686	981	1177			
Umgebungs	stemp	eratur (°C)			-10 bis 80					
Feder-	ents	pannt	6.08	12.75	15.69	21.57	24.52			
kraft (kgf)	gesp	pannt	13.45	27.75	37.85	44.23	54.23			
Gewicht (g)	Gewicht (g)			60	110	182	240			
Option/Hubbegrenzungsmutter			RBQ16S	RB20S	RBQ25S	RBQ30S	RBQ32S			

- *Bei max. Energieaufnahme pro Zyklus. Die max. Zahl kann proportional zur Energieaufnahme zunehmen.
- **Befestigungsmuttern: 2 Stk. (Standard).

Bestellschlüssel

RB


D

20-

Technische Daten

*2 Sechskant-Befestigungsmuttern werden standardmässig mitgeliefert.

Konstruktion

Eine Last, die auf das Kolbenstangenende trifft, setzt das Öl im Kolben unter Druck. Das unter Druck stehende Öl entweicht über die Bohrungen im Kolben, dabei wird eine hydraulische Gegenkraft aufgebaut, die der Last entgegenwirkt und deren kinetische Energie langsam abbaut. Das ausströmende Öl wird vom Akkumulator aufgenommen.

Wird die Last entfernt, so wird die Kolbenstange von der Rückstellfeder nach aussen gedrückt und ein Unterdruck erzeugt, der die Stahlkugel bewegt, damit das Öl schnell in das Kolbenstangeninnere zurückströmen kann und der Stossdämpfer für den nächsten Aufprall bereit steht.

Stückliste

Pos.	Bezeichnung	Material	Bemerkung
1	Aussenrohr	Stahl	schwarz vernickelt
2	Kolbenstange	Spezialstahl	gehärtet, hart verchromt
3	Kolben	Spezialstahl	gehärtet
4	Lager	Speziallagermaterial	
(5)	Rückstellfeder	Federstahl	verz. u. chromatiert
(6)	Anschlag	Stahl	verz. u. chromatiert

Pos.	Bezeichnung	Material	Bemerkung
7	Stahlkugel	Lagerstahl	
8	Akkumulator	NBR	geschäumt
9	Abstreifer	NBR	
10	Abstreifer	NBR	
11)	Anschlagkappe	PUR	nur mit Anschlagkappe

Serie RBQ Modellauswahl

Auswahlvorgang

1 Bestimmung des Lastfalls

- □Zylinder mit Last (horizontal)
- □Zylinder mit Last (abwärts)
- □Zylinder mit Last (aufwärts)
- □Förderanlage mit Last (horizontal)
- □freier horizontaler Stoss □frei fallende Last
- □schwenkende Last (mit Drehmoment)

2 Wirksame Grössen

Symbol	wirksame Grössen	Einheit
m	aufprallendes Objekt/Gewicht	kgf
u	Aufprallgeschwindigkeit	m/sec
h	Fallhöhe	m
W	Winkelgeschwindigkeit	rad/sec
r	Abstand zwischen Zylinderachse und Aufprallpunkt (Schwenkradius)	m
d	Kolben-ø	mm
Р	Zylinderbetriebsdruck	MPa
F	Antriebskraft	kgf
Т	Drehmoment	Nm
n	Betriebszyklen	Zyklen/min
t	Umgebungstemperatur	°C
μ	Reibungskoeffizient	_

3 Technische Daten und Betriebsbedingungen Stellen Sie sicher, dass die Aufprallgeschwindigkeit, Antriebskraft, Betriebszyklen, Umgebungstemperatur und Atmospähre innerhalb der technischen Daten liegen.

Beachten Sie den min. Installationsradius beim schwenkenden Aufprall.

4 Berechnung der kinetischen Energie E1 Verwenden Sie die Gleichung zur Bestimmung des Lastfalls.

Bei Zylindern mit Last und beim freien horizontalen Stoss setzen Sie die entsprechenden Werte des Diagramms A, um E1 zu berechnen

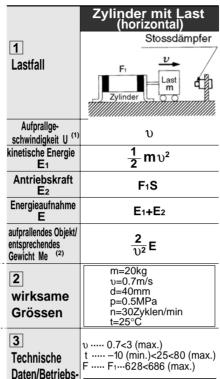
Berechnung der Antriebskraft E2 Wählen Sie ein vorläufiges Stossdämpfer-

Bei Antriebskraft des Zylinders setzen Sie die entsprechenden Werte in Diagramm B oder C ein

6 Berechnung des effektiven Gewichts des aufprallenden Objekts Me

Energaufnahme E=E1+E2 effektives Gewicht des aufprallenden Objekts

Setzen Sie die Energieaufnahme E und die Aufprallgeschwindigkeit V in Diagramm A um das effektive Gewicht des aufprallenden Objekts zu berechnen.


7 Auswahl des geeigneten Modells

Mit Hilfe des gefundenen effektiven Gewichts des aufprallenden Objekts Me und der Aufprallgeschwindigkeit V kann nun mit Diagramm D die Vorauswahl bestätigt werden.

Achtung

Damit der Stossdämpfer einwandfrei über viele Stunden funktioniert, ist es wichtig, dass ein Modell gewählt wird, das den jeweiligen Bedingungen angepasst ist. Wenn die Aufprallenergie kleiner als 5% der max. absorbierbaren Energie ist, wählen Sie das nächstkleinere Modell.

Auswahlbeispiel

bedingungen

4 Berechnen Sie E1 mit obiger Formel. Ersetzen Sie m durch 20 Berechnung der und υ durch 0.7.

kinetischen Energie E1

Wählen Sie RBQ2508 als vorläufiges Modell. Verwenden Sie Diagramm B Berechnung um E2 zu berechnen. Ersetzen Sie d durch 40.

JA

E₁ ≅ **4**.9**J**

der Antriebskraft E2

E₂ ≅ 5.0J

effektiven Gewichts des aufprallenden

Obiekts Me

Verwenden Sie die Formel "Energie-Berechnung des aufnahme E=E1+E2=4.9+5.0=9.9J", um Me zu berechnen. Ersetzen Sie E durch 9.9J und v durch 0.7.

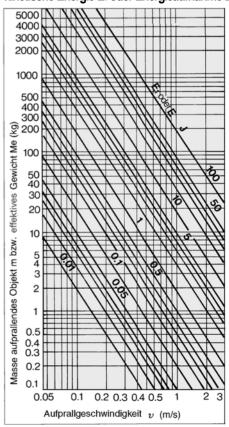
Me ≅ 40kg

7 Auswahl des geeigneten

Modells

Gemäss Diagramm D erfüllt die vorläufige Auswahl RB2508 die Bedingung Me=40 kg<60kg bei υ=0.7. Bei einem Einsatz mit Betriebszyklen n...30 <45 treten keine Probleme auf.

Wählen Sie RBQ2508


1 Bestimmung des Lastfalls

	(abwärts)	
Lastfall	Zylinder	
Aufprallge- schwindigkeit $v^{(1)}$	υ	
kinetische Energie E ₁	$\frac{1}{2}$ m $_{v}^{2}$	
Antriebskraft E ₂	F₁S +mgs	
Energieauf- nahme E	E1+E2	
auprallendes Objekt/ (2) effektives Gewicht Me	<u>2</u> υ² Ε	

Anm. 1) Die Aufprallgeschwindigkeit ist die momentane Geschwindigkeit, mit der ein Objekt am Stossdämpfer aufprallt.

Diagramm A

kinetische Energie E1 oder Energieaufnahme E

Stossdämpfer Kurze Ausführung Serie RBQ

(aufwärts)	Förderanlage mit Last (horizontal)	frei fallende Last	schwenkende Last (mit Drehmoment)
υ Last m Zylinder	Last d	Last v	T C C C C C C C C C C C C C C C C C C C
υ	υ	$\sqrt{2gh}$	ω R
$\frac{1}{2} \text{ m} v^2$	$\frac{1}{2} \text{ m} v^2$	mgh	$\frac{1}{2}$ I ω^2
F ₁ S-mgS	mgμS	mgS	T S R
E1+E2	E1+E2	E1+E2	E1+E2
$\frac{2}{v^2}$ E	$\frac{2}{v^2}$ E	$\frac{2}{v^2}$ E	$\frac{2}{v^2}$ E

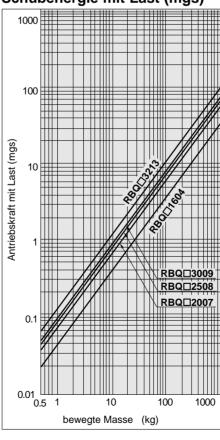
Anm. 2) Das "effektives Gewicht des aufprallenden Objekts" ist das Gewicht eines aufprallenden Objekts ohne Schub, in das die Gesamtenergie des Objekts umgewandelt wurde. Hence, E = 1/2 Me v²
Anm. 3) Siehe Katalog für rotierende Antriebe für die Formel des Trägheitsmoments (Kgm²).

Symbol

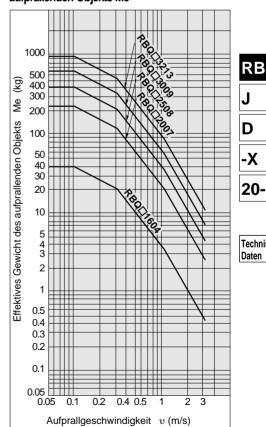
Syllik)OI	
Symbol	wirksame Grösse	Einheit
d	Kolben-ø	mm
Е	Energieaufnahme	J
E1	kinetische Energie	J
E2	Antriebskraft	J
F1	Zylinderschub	N
g	Fallbeschleunigung	m/s ²
h	Fallhöhe	m
I ⁽³⁾	Massenträgheitsmoment	kgm²
n	Betriebsfrequenz	Zyklen/min
р	Zylinderbetriebsdruck	MPa
R	Abstand zwischen Zylinderachse und Aufprallpunkt (Schwenkradius)	m
S	Stossdämpferhub	m
Т	Drehmoment	Nm
t	Umgebungstemperatur	°C
υ	Aufprallgeschwindigkeit	m/s
m	Gewicht des aufprallenden Objekts	kg
Me	effektives Gewicht des aufprallenden Objekts	kg
ω	Winkelgeschwindigkeit	rad/s
μ	Reibungskoeffizient	_

Diagramm B

Antriebskraft des Zylinders F₁S

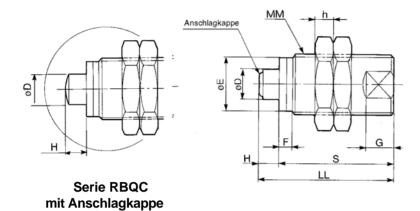

(Betriebsdruck 0.5MPa)

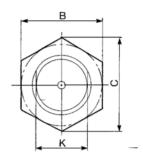
						(-)
M	lodell	RBQ□ 1604	RBQ□ 2007	RBQ□ 2058	RBQ□ 3009	RBQ□ 3213
abs	Hub- sorption (mm)	4	7	8	8.5	13
	6	0.057	0.099	0.113	0.120	0.184
	10	0.157	0.274	0.314	0.334	0.511
	15	0.353	0.619	0.707	0.751	1.15
	20	0.628	1.10	1.26	1.34	2.04
(-	25	0.982	1.72	1.96	2.09	3.19
m	30	1.41	2.47	2.83	3.00	4.59
) p	40	2.51	4.40	5.03	5.34	8.17
Z-U	50	3.93	6.87	7.85	8.34	12.8
Kolben-ø d (mm)	63	6.23	10.9	12.5	13.2	20.3
X	80	10.1	17.6	20.1	21.4	32.7
	100	15.7	27.5	31.4	33.4	51.1
	125	24.5	43.0	49.1	52.2	79.8
	140	30.8	53.9	61.6	65.4	100
	160	40.2	70.4	80.4	85.5	131
	180	50.9	89.1	102	108	165
	200	62.8	110	126	134	204
	250	98.2	172	196	209	319
	300	141	247	283	300	459


■Anderer Betriebsdruck als 0.5MPa: Multiplizieren Sie mit folgenden Faktoren

Betriebsdruck (MPa)	1	0.2	0.3	0.4	0.5	0.6	0.7	0.8	0.9
Koeffizient	0.2	0.4	0.6	0.8	1.0	1.2	1.4	1.6	1.8

Diagramm C Schubenergie mit Last (mgs)




Diagramm D Effektives Gewicht des aufprallenden Objekts Me

Technische Daten

Abmessungen

Serie RBQ Grundausführung

Mo	odell		Stossdämpfer					Sechskantmutter					
Grundausführung	mit Anschlagkappe	D	Е	F	Н	K	G	LL	MM	S	В	С	h
RBQ1604	RBQC1604	6	14.2	3.5	4	14	7	31	M16 X 1.5	27	22	25.4	6
RBQ2007	RBQC2007	10	18.2	4	7	18	9	44.5	M20 X 1.5	37.5	27	31.2	6
RBQ2508	RBQC2508	12	23.2	4	8	23	10	52	M25 X 1.5	44	32	37	6
RBQ3009	RBQC3009	16	28.2	5	8.5	28	12	61.5	M30 X 1.5	53	41	47.3	6
RBQ3213	RBQC3213	18	30.2	5	13	30	13	76	M32 X 1.5	63	41	47.3	6

Sechskantmutter (2 Stk. Standard)

MM

M16 X 1.5

M20 X 1.5

M25 X 1.5

M30 X 1.5

RBQ16J

RB20J⁽¹⁾

RBQ25J

RBQ30J

Bestell-Nr. MM h B

RBQ32J	M32 X 1.5	6	41	47.3
Anm. 1) Die Abr	nessungen der i	Ausführu	ng RB20	J gelten
sowohl	für die Serie RE	als auc	h RBQ.	

6

6

6

6

22

27

32

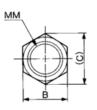
41

Option

(mm)

С

25.4


31.2

37

47.3

Hubbegrenzungsmutter

	Material: Stah			
Bestell-Nr.	В	С	h1	MM
RBQ16S	22	25.4	12	M16 X 1.5
RB20S(2)	27	31.2	16	M20 X 1.5
RBQ25S	32	37	18	M25 X 1.5
RBQ30S	41	47.3	20	M30 X 1.5
RBQ32S	41	47.3	25	M32 X 1.5

Anm. 2) Die Abmessungen der Ausführung RB20S gelten sowohl für die Serie RB als auch RBQ.

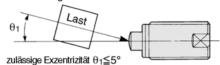
Ersatzteile

Anschlagkappe

Dies sind die Ersatzteile für die Ausführung mit Kappe. Nicht erhältlich für die Grundausführung.

		M	laterial: PUR
Bestell-Nr.	Α	В	С
RBQC16C	3.5	4	4.7
RBQC20C	4.5	8	8.3
RBQC25C	5	8.3	9.3
RBQC30C	6	11.3	12.4
RBQC32C	6.6	13.1	14.4

Vor Inbetriebnahme lesen. Siehe S. 0-39 bis 0-43 für Sicherheitshinweise und allgemeine Vorsichtsmassnahmen.


S

Auswahl

⚠ Warnung

①Eine Last muss immer mit der Achse der Kolbenstange ausgerichtet

Eine Abweichung um mehr als 5° führt zu einer übermässigen Belastung der Lager, was zu Ölleckagen nach nur kurzer Betriebszeit führt.

72 Bei schwenkenden Lasten muss die Installation so erfolgen, dass die Richtung, in der die Last auf den Stossdämpfer prallt, in Achsrichtung des Stössels verläuft. Der zulässige Bremswinkel zum Hubende beträgt $\theta_2 < 5^{\circ}$. In diesem Fall

ist der min. Installationsradius wie in der untenstehenden Tabelle angegeben. Wenn der Winkel 5° übersteigt, könnte dies zu Ölleckagen

Stromversorgung der Anlage ausgeschaltet wurde und überprüfen Sie, ob die Anlage angehalten ist.

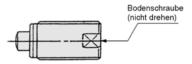
🗥 Warnung

🗥 Achtung 1) Das Anzugsmoment der Befestigungsmuttern ist wie folgt:

		3 3			5
Modell	RBQ1604	RBQ2007	RBQ2508	RBQ3009	RBQ3213
Gewinde-Aussen-ø (mm)	M16	M20	M30	M30	M32
max. Anzugs- moment (Nm)	14.7	23.5	34.3	78.5	88.3

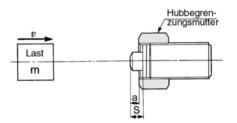
Montage

1)Stellen Sie sicher, dass vor Einbau, Ausbau oder Hubeinstellung die


Wenn das Anzugsmoment den in der obigen Tabelle angegebenen Wert

übersteigt, könnte der Stossdämpfer beschädigt werden.

②Beschädigen Sie nicht den Gleitteil der Kolbenstange oder die Aussenseite.

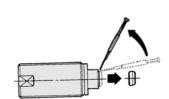

Ansonsten könnten Dichtungen beschädigt werden, was zu Ölleckagen und Fehlfunktionen führt. Beschädigungen am Gewinde des Aussenrohres könnten eine Montage am Rahmen verhindern oder innere Komponenten könnten deformiert werden, was zu Fehlfunktionen führt.

③Drehen Sie niemals die Schraube am Boden des Stossdämpfers (sie ist keine Einstellschraube), da dies zu Ölleckagen führt.

4 Stellen Sie den Anhaltezeitpunkt wie folgt durch Verwendung der Hubbegrenzungsmutter ein.

Stellen Sie den Anhaltezeitpunkt des aufprallenden Körpers durch Ein- oder Ausdrehen der Hubbegrenzungsmutter ein (Veränderung der Länge "a"). Nach Einstellen der Hubbegrenzungsmutter sichern Sie diese mit einer Sechskantmutter.

Wartung


\land Achtung

① Stellen Sie sicher, dass die Sicherungsmutter nicht locker ist. Der Stossdämpfer könnte ansonsten beschädigt werden.

②Achten Sie auf abnormale Aufprallgeräusche und Vibrationen. Wenn abnormale Aufprallgeräusche und Vibrationen übermässig auftreten, könnte der Stossdämpfer kurz vor seiner Abnutzung stehen. Wenn dies der Fall ist, ersetzen Sie ihn. Bei Weiterverwendung könnte die Anlage be-

schädigt werden.

③Überprüfen Sie die Anschlagkappe auf Risse und Abnutzung. Bei der Ausführung mit Anschlagkappe nutzt sich diese als erste ab. Um Beschädigungen am aufprallenden Körper zu vermeiden, wechseln Sie die Anschlagkappe regelmässig aus. Sie kann leicht mit einem kleinen Schraubendreher ausgetauscht werden. Beim Wiederzusammenbauen drücken Sie das schmalere Ende in den Kolben.

Installationsvoraussetzungen für schwenkenden Aufprall (mm)

Modell	S (Hub)	θ2 (zulässiger Bremswinkel)	R (min. Installationsradius)
RBQ□1604	4		46
RBQ□2007	7		80
RBQ□2508	8	5°	92
RBQ□3009	8.5		98
RBQ□3213	13		149

3Eine Führung ist erforderlich, wenn der aufprallende Körper mit

Vibrationen verbunden ist. Wenn der aufprallende Körper mit Vibrationen verbunden ist und wenn eine Kraft in Achsrichtung auf die Kolbenstange wirkt, muss der aufprallende

Körper mit einer sicheren Führung versehen werden.

4 Bei der Installation muss die Steifigkeit des Montagerahmens berück-

Bei mangelnder Steifigkeit vibriert der Stossdämpfer nach einem Aufprall, was zu einer Abnutzung der Lager und zu Beschädigungen führt. Berechnen Sie mit folgender Formel die Kraft, die auf den Montagerahmen E (Energieaufnahme J)

Kraft, die auf den Montagerahmen wirkt $N \cong 2$

H2

Achtung

①Die in den technischen Daten angegebene max. absorbierte Energie der Serien RB und RBL kann nicht erreicht werden, wenn nicht der

gesamte Hub verwendet wird. ②Die Kontaktoberfläche des aufprallenden Körpers, mit der die Kolbenstange zusammentrift, muss äusserst steif sein.

Bei der Ausführung ohne Kappe wird der Kontaktoberfläche des aufprallenden Körpers eine hohe Druckbelastung zugeführt. Deshalb muss die Kontaktoberfläche äusserst steif sein

(Härtegrad min. HRC 35).

3 Beachten Sie die Rückprallkraft des aufprallenden Körpers.

Bei Verwendung mit Förderanlagen kann der aufprallende Körper, nachdem der Stossdämpfer die Energie aufgenommen hat, aufgrund der eingebauten Feder zurückprallen. Beachten Sie die Angaben zur Federkraft in den technischen Daten (S.5.1-10).

Umgebung

⚠ Warnung

1) Setzen Sie den Stossdämpfer nicht Maschinenöl, Wasser oder Staub

Die Serie RB kann nicht in Umgebungen eingesetzt werden, in denen Maschinenöl oder Wasser als Sprühnebel auftreten, oder in denen Staub sich an die Kolbenstange anheften könnte. Solche Bedingungen verursachen Fehlfunktionen

2 Setzen Sie den Stossdämpfer nicht in Umgebungen ein, die Korrosion begünstigen.

Beachten Sie die Materialien, die für den Stossdämpfer verwendet werden, in den entsprechenden Konstruktionszeichnungen.

③Verwenden Sie den Stossdämpfer nicht in Reinräumen,

weil diese sonst kontaminiert werden könnten

Daten

Technische

RB

D

-X

20-